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Abstract 
Four new4-N-substituted pyran-2-ones (δ-lactones) were successfully synthesised from their 
corresponding cyanoalcohols via two reaction steps; (i) acylation and (ii) radical cyclisation. Four 
cyanobromoesters that were produced from acylation were treated with tris(trimethylsilyl)silane 
(TTMSH) and azobisisobutyronitrile (AIBN) in toluene to obtain 5-hydro-4-imino-3,6-
dimethylpyran-2-one (4a), 4-amino-5-hydro-3,6,6-trimethylpyran-2-one (4b),3,5-dihydro-4-imino-
6-methylpyran-2-one (4c), and 3,5-Dihydro-4-imino-6,6-dimethylpyran-2-one (4d). 
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1. Introduction 
Radical cyclisation is a method that is widely used for the carbon-carbon bond formation with 
carbon-centered radicals is the most preferred intermediates. This method has a dominant role in the 
development of novel methodology where, the reaction will be more selective and predictable. 
Moreover, radical chemistry has greater functional group tolerance where it will only attack the 
desired functional group. 
A number of radical cyclisation studies towards heterocycles were published involving the 
cyclisation of lactams [1-6], lactones[3,7-10], polycyclics [11-15], pyrroles [16-21], azoles [22-24] 
and indoles [25-29].Usually this radical cyclisation was performed in organic solvent such as 
benzene and toluene but the used of water also reported [30-32]. Radical cyclisation are typically 
generated by hydrogen donors or their derivatives such astin hydride [33-35], silane hydride [36-
38], germanium hydride [39], gallium hydride [40], organoborane [10,41], hypophosphorous 
acid[42-44]with the presence of radical initiators (e.g. peroxides, boranes or azo).   
Tributyltinhydride (Bu3SnH) is known for its major role in most radical cyclisation approaches and 
often gives products in high yield. However, this reducing agent is also known to be difficult to 
handle and is toxic. In contrast, tris(trimethylsilyl)silane ((Me3Si)3SiH) is also known for its 
effectiveness and lowers the formation of unwanted reduction products. Among the radical initiators 
present in the market, azo-based initiators are relatively inexpensive, safer to useand greater thermal 
stability.  
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Figure 1:Bioactive compounds containing 5,6-dihydropyran-2-ones 

 
5,6-Dihydropyran-2-one  (δ-lactone)is an important class of oxygen-containing six-membered 
heterocycliccompound and can be found in many important bioactive natural products. This 3-ene-
lactone is a common precursor for the synthesis, and possesses key structural units that are of interest 
and have potential in pharmaceuticals or drug discovery (Figure 1) [45-51].The complexity of 
structures, together with their known bioactivities have made the synthesis of substituted pyran-2-
ones are worthwhile. Many studies have been reported in developing new approach towards the 
synthesis of lactones such as radical cyclisation onto alkenes or alkynes. Therefore, the aim of this 
study is to investigate the possibility of cyclisation onto nitriles using radical chemistry. 
It was proposed that δ-lactone could be produced from the 4-imino or 4-amino lactones which in 
turn can be prepared from the precursors’ cyanobromoestersvia radical cyclisation approach. 
Further retrosynthetic disconnection of the precursors lead to the commercially available 
cyanoalcohols and 2-bromoacyl chlorides (Figure 2). 
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Figure 2:Retrosynthetic analysis of δ-lactones 
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2. Materials and Methods 
2.1  General 
All experiments were carried out under nitrogen atmosphere. Reactions were monitored by TLC 
(Merck, silica gel 60 F254) then visualised under UV (UVGL-58) and KMnO4 solution. The column 
chromatography was performed by using Merck silica gel 60 (230-400 mesh ASTM). The NMR 
spectra were obtained from JOEL JMTC-500/54/SS (500 MHz for 1H and 125 MHz for 13C) and 
NM-SCM40J/SS (400 MHz for 1H and 100 MHz for 13C) spectrometers in CDCl3, CH3OD, 
(CD3)2SO or (CD3)2CO as solvent. The coupling constants were recorded in Hz and the chemical 
shifts (δ) were recorded in ppm relative to TMS signal. The signals were described in terms of 
chemical shift with appropriate abbreviations for multiplicities as s (singlet), d (doublet), t (triplet) 
and m (multiplet). IR spectra were obtained from a Perkin-Elmer FT-IR Model Spectrum 100 series 
using UATR techniques and the adsorption bands were measured inrange 280 to 4000 cm-1. MS 
spectra were recorded on Shimadzu QP5050A series or QP2010PLUS. The melting points were 
recorded on Leica Galen III Serial No. 1109xz.  
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Scheme 1: General acylation and radical cyclisation reactions 

 
2.2 General Procedure for Acylation of Cyanoalcohols 
Acyl chlorides2(1.2 eq.) in anhydrous CH2Cl2 (8 mL) was added dropwise into a stirred solution of 
cyanoalcohols 1 (1.0 eq.) and pyridine (1.0 eq.) in anhydrous CH2Cl2 (20 mL) at 0°C. The reaction 
mixture was allowed to warm to RT and was stirred continuously for 2-3 h. EtOAc (10 mL) was 
added to the reaction mixture and stirred for an additional 10-15 mins. The organic layer was 
washed successively with water (3 x 15 mL), saturated NaHCO3 (3 x 15 mL) and brine (3 x 15 mL). 
The organic layer was dried over Na2SO4, filtered and evaporated in vacuo to give the crude product 
which was then chromatographed on silica gel (EtOAc-Hexane, 3:7) to yield cyanobromoesters3.  
 
2.3 General Procedure for Radical Cyclisation of Cyanobromoesters 
Cyanobromoesters3 (1.0 eq.) was dissolved in degassed toluene (67 mL) and stirred under nitrogen 
atmosphere. A solution of TTMSH (1.1 eq.) and AIBN (0.1 eq.) in degassed toluene (16.7 mL) was 
added dropwise via mechanical syringe into the stirred solution over 12 hours under reflux 
condition. The mixture was allowed to cool to RT before the solvent was removed under vacuo to 
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give crude product which was then chromatographed on silica gel (EtOAc-Hexane, 1:9) to yield δ-
lactones 4. 
 
2.3.1 5-Hydro-4-imino-3,6-dimethylpyran-2-one (4a) 
Orange solid (0.13 g, 53%); mp 107°C; νmax (UATR) 3383, 2940, 1725, 1462, 1030 cm-1; δH (500 
MHz, CDCl3)5.11 (1H, br. s, NH), 3.48 (1H, q, J 7.5 Hz, CHCH3),3.01-2.90 (1H, m, OCHCH3), 
2.21 (6H, d, J 7.5 Hz, 2(CHCH3)),1.64 and 1.62 (2H, s, CH2CH); δC (125 MHz, CDCl3) 207.4, 
191.9, 134.5, 53.4, 31.1, 19.1; m/z (EI) 127 ([M+], C6H9O2N requires 127). 
 
2.3.2 4-Amino-5-hydro-3,6,6-trimethylpyran-2-one (4b) 
Yellow solid (0.08 g, 60%); mp 210°C; νmax (UATR) 3367, 2924, 1626, 1462, 1172 cm-1; δH (500 
MHz, (CD3)2CO) 3.27 (2H, br. s, NH2), 1.67 (3H, s, C=CCH3), 1.40 (6H, s, (CH3)2CO, 1.01 (1H, s, 
CH2CNH2) 0.99 (1H, s, CH2CNH2); δC (125 MHz, (CD3)2CO) 170.7, 162.5, 115.0, 54.2, 42.1, 24.6, 
12.6; m/z (EI) 155 ([M+], C8H13NO2 requires 155). 
 
2.3.3 3,5-Dihydro-4-imino-6-methylpyran-2-one (4c) 
Sticky white solid (0.12 g, 55%); νmax (UATR) 3743, 2924, 1741, 1460, 966 cm-1; δH (500 MHz, 
CDCl3) 4.80 (1H, s, NH), 1.59 (2H, s, CH2CNH), 1.25 (2H, d,J 29.2 Hz, CH2CO), 0.89-0.76 (1H, 
m, OCHCH3), 1.80 (3H, d, J 14.9 Hz, OCHCH3); δC (125 MHz, CDCl3) 192.8, 182.6, 119.8, 29.6, 
25.5, 22.8;  m/z (EI) 127 ([M+], C6H9NO2 requires 127). 
 
2.3.4 3,5-Dihydro-4-imino-6,6-dimethylpyran-2-one (4d) 
White solid (0.13 g, 40%); mp 230°C; νmax (UATR) 3376, 3206, 2502, 1645, 1211 cm-1; δH (500 
MHz, CDCl3) 4.11 (1H, br. s, NH), 1.88 (6H, s, C(CH3)2), 1.44 (2H, s, CH2CNH), 1.07 (1H, d,J 6.9 
Hz, CH2CO); δC (125 MHz, CDCl3) 179.6, 177.7, 35.4, 24.1, 23.0, 18.6; m/z (EI) 141 ([M+], 
C7H11NO2 requires 141). 
 
3. Results and Discussion 
The synthetic strategies were started with the preparation of the cyanobromoesters 3 using different 
cyanoalcohols and acyl chlorides via simple and standard acylation protocol. These reactions were 
performed in pyridine/CH2Cl2 for 2-3 hoursand managed to produce esters 3a-3d in good yields.  
All esters were then treated under radical mediated approach in the next step to produce lactones. 
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Figure 3:N-substituted δ-lactones obtained from radical cyclisation reactions 
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The reactionwas performed using cyanobromoesters3(1.0 eq.), (Me3Si)3SiH (1.1 eq.) and AIBN (0.1 
eq.) in degassed toluene. The effect of the addition time was studied by varying the time from 1, 2, 
4 and 6 hours. Unfortunately, the desired product 4 was not produced at these short addition times. 
Changing to very slow dropwise addition of (Me3Si)3SiH  and AIBN over 12 hours then allowed for 
the successful production of lactones4a, 4b, 4cand 4d in good yields. 
6-Methylpyran-2-ones 4a and 4c were produced in higher yields (53% and 55%) compared to 6,6-
dimethylpyran-2-ones 4b and 4d(41% and 40%).Increase the number of alkyl on position C-6 also 
increased the yield of lactones. However, no significant effects were observed with the addition of 
alkyl at position C-3. As comparison, lactone 4a was obtained in 53% yield whereas lactone 4cwas 
obtained in 55% yield.Similar results were observed for lactones 4b and 4d. These results showed 
that these δ-lactones can be prepared using radical cyclisation approach and the structures 
confirmed that all N-substituted lactones were obtained either in forms of 4-amino or 4-imino 
through 6-exo-dig mechanism. It was believed that 6-membered ring lactonesare easy to form due to 
the proximity of C≡N and radical carbon (C•) during the reaction that conducted under diluted 
conditions and slow addition of silane. The chain length together with the flexibility of ester bond 
allowed the C≡N moiety to be closer to C• and therefore increased the cyclisation rate. Acyclic 
reduction product was not observed for all radical cyclisation reaction. 
 
4. Conclusion 
A general radical cyclisation approach has been developed for the synthesis of 4-N-substituted 
pyran-2-ones. Four new amino- or imino-substitutedδ-lactones have been successfully synthesised 
starting from commercially available cyanoalcohols and bromoacyl chlorides through 6-exo-dig 
type of cyclisation. 
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